Achtung:

Sie haben Javascript deaktiviert!
Sie haben versucht eine Funktion zu nutzen, die nur mit Javascript möglich ist. Um sämtliche Funktionalitäten unserer Internetseite zu nutzen, aktivieren Sie bitte Javascript in Ihrem Browser.

Department Sport & Gesundheit
Trainings- und Neurowissenschaften
Prof. Dr. Jochen Baumeister
Bildinformationen anzeigen

Sport, Bewegung, Training und das zentrale Nervensystem

Der in der Sportwissenschaft neue Themenbereich “Exercise Neuroscience” beschäftigt sich aus einer neurowissenschaftlichen Perspektive mit trainingswissenschaftlichen Fragestellungen zu den Forschungsfeldern Leistung und Gesundheit. Neben klassischer trainingswissenschaftlicher Forschung analysieren wir im Kontext von Training und Bewegung kortikale und/oder (kortiko-)muskuläre Aktivitäten und Netzwerke in Labor und mobil im Feld, die im sportlichen Zusammenhang zu Diagnostik, Konzeption und Evaluation von Training zur (Wieder-)Herstellung, dem Erhalt und der Entwicklung von Leistung und Gesundheit genutzt werden können. 

Publikationen des Arbeitsbereichs


Liste im Research Information System öffnen

Büchel, D., Torvik, P. Ø., Lehmann, T., Sandbakk, Ø., & Baumeister, J. (2023). The Mode of Endurance Exercise Influences Changes in EEG Resting State Graphs among High-Level Cross-Country Skiers. Medicine & Science in Sports & Exercise, Publish Ahead of Print. https://doi.org/10.1249/mss.0000000000003122


Lehmann, T., Visser, A., Havers, T., Büchel, D., & Baumeister, J. (2022). Surface Instability Modulates Cortical Information Processing In Multi-Joint Compound Movements. Medicine & Science in Sports & Exercise, 54(9S), 565–565. https://doi.org/10.1249/01.mss.0000882152.12078.64


Visser, A., Büchel, D., Lehmann, T., & Baumeister, J. (2022). Continuous table tennis is associated with processing in frontal brain areas: an EEG approach. Experimental Brain Research. https://doi.org/10.1007/s00221-022-06366-y

<jats:title>Abstract</jats:title><jats:p>Coordinative challenging exercises in changing environments referred to as open-skill exercises seem to be beneficial on cognitive function. Although electroencephalographic research allows to investigate changes in cortical processing during movement, information about cortical dynamics during open-skill exercise is lacking. Therefore, the present study examines frontal brain activation during table tennis as an open-skill exercise compared to cycling exercise and a cognitive task. 21 healthy young adults conducted three blocks of table tennis, cycling and n-back task. Throughout the experiment, cortical activity was measured using 64-channel EEG system connected to a wireless amplifier. Cortical activity was analyzed calculating theta power (4–7.5 Hz) in frontocentral clusters revealed from independent component analysis. Repeated measures ANOVA was used to identify within subject differences between conditions (table tennis, cycling, n-back; <jats:italic>p</jats:italic> &lt; .05). ANOVA revealed main-effects of condition on theta power in frontal (<jats:italic>p</jats:italic> &lt; .01, <jats:italic>η</jats:italic><jats:sub>p</jats:sub><jats:sup>2</jats:sup> = 0.35) and frontocentral (<jats:italic>p</jats:italic> &lt; .01, <jats:italic>η</jats:italic><jats:sub>p</jats:sub><jats:sup>2</jats:sup> = 0.39) brain areas. Post-hoc tests revealed increased theta power in table tennis compared to cycling in frontal brain areas (<jats:italic>p</jats:italic> &lt; .05, <jats:italic>d</jats:italic> = 1.42). In frontocentral brain areas, theta power was significant higher in table tennis compared to cycling (<jats:italic>p</jats:italic> &lt; .01, <jats:italic>d</jats:italic> = 1.03) and table tennis compared to the cognitive task (<jats:italic>p</jats:italic> &lt; .01, <jats:italic>d</jats:italic> = 1.06). Increases in theta power during continuous table tennis may reflect the increased demands in perception and processing of environmental stimuli during open-skill exercise. This study provides important insights that support the beneficial effect of open-skill exercise on brain function and suggest that using open-skill exercise may serve as an intervention to induce activation of the frontal cortex.</jats:p>


Büchel, D., Allen, C., Lehmann, T., Sandbakk, Ø., & Baumeister, J. (2022). Changes In Eeg Microstate Patterns Following Exhaustive Treadmill Exercise When Employing Reduced Channel Resolution. Medicine &Science in Sports& Exercise, 54(9S), 262–262. https://doi.org/10.1249/01.mss.0000878300.82239.03


Lehmann, T., Visser, A., Havers, T., Büchel, D., & Baumeister, J. (2022). Surface Instability Modulates Cortical Information Processing In Multi-Joint Compound Movements. Medicine &Science in Sports& Exercise, 54(9S), 565–565. https://doi.org/10.1249/01.mss.0000882152.12078.64


Scharfen, H.-E., Lehmann, T., Büchel, D., & Baumeister, J. (2022). Cortical responses to sport-specific stimuli in a standing stop signal task. Psychology of Sport and Exercise, Article 102250. https://doi.org/10.1016/j.psychsport.2022.102250


Büchel, D., Gokeler, A., Heuvelmans, P., & Baumeister, J. (2022). Increased Cognitive Demands Affect Agility Performance in Female Athletes - Implications for Testing and Training of Agility in Team Ball Sports. Perceptual and Motor Skills, Article 003151252211086. https://doi.org/10.1177/00315125221108698

<jats:p> Agility, a key component of team ball sports, describes an athlete´s ability to move fast in response to changing environments. While agility requires basic cognitive functions like processing speed, it also requires more complex cognitive processes like working memory and inhibition. Yet, most agility tests restrict an assessment of cognitive processes to simple reactive times that lack ecological validity. Our aim in this study was to assess agility performance by means of total time on two agility tests with matched motor demands but with both low and high cognitive demands. We tested 22 female team athletes on SpeedCourt, using a simple agility test (SAT) that measured only processing speed and a complex agility test (CAT) that required working memory and inhibition. We found excellent to good reliability for both our SAT (ICC = .79) and CAT (ICC =.70). Lower agility performance on the CAT was associated with increased agility total time and split times ( p &lt; .05). These results demonstrated that agility performance depends on the complexity of cognitive demands. There may be interference-effects between motor and cognitive performances, reducing speed when environmental information becomes more complex. Future studies should consider agility training models that implement complex cognitive stimuli to challenge athletes according to competitive demands. This will also allow scientists and practitioners to tailor tests to talent identification, performance development and injury rehabilitation. </jats:p>


Die maximale Anzahl anzuzeigender Publikationen wurde erreicht - alle Publikationen finden Sie im Research Infomation System.

Liste im Research Information System öffnen

Arbeitsgruppenleiter

Prof. Dr. Jochen Baumeister

Trainings- und Neurowissenschaften

Jochen Baumeister
Telefon:
+49 5251 60-3200
Fax:
+49 5251 60-3188
Büro:
SP1.514

Sprechzeiten:

dienstags 13-14 Uhr (NEU!)


Kontakt
Keine Kontaktpersonen gefunden.

Die Universität der Informationsgesellschaft